University of Copenhagen

FACULTY OF HEALTH AND MEDICAL SCIENCES

All you need is two tablets – How axial recovery is the key to a precise out-of-die tablet density prediction

Cosima Hirschberg¹, Shubhajit Paul², Jukka Rantanen¹, Changquan C. Sun²

Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark; cosima.hirschberg@sund.ku.dk;

² Department of Pharmaceutics, University of Minnesota, 308 Harvard St.SE, Minneapolis, United States

AIM

aim of this work was to The develop a mechanistic model to precisely predict the out-of-die density profile of a material using minimal mathematical effort and a minimal number Of actual compacted tablets. Axial recovery is the main reason for density changes after compression and by getting a better understanding of this mechanism, a mathematical model can be developed.

MATERIAL AND METHODS

Compaction data were collected from two

RESULTS

PART I: Understanding axial recovery

Fig.1: elastic recovery of microcrystalline cellulose

PART II: Predicting tablet density

Analysis of >50 materials, blends and final formulations showed that:

- 1. in-die elastic recovery linearly depends on compaction pressure (P)
- 2. Out-of-die elastic recovery is independent of *P* (Fig. 1) The total elastic recovery is split into 'in-die' and 'out-of-die' components, which are collected using a compaction simulator and manual measurement of tablet thickness and diameter, respectively.

different compaction simulators at two universities (University different Of Minnesota - UMN and University of Copenhagen - UCPH). Data of previous compaction projects were hereby kindly provided by colleagues. Different methods to control the compaction were used (fixed thickness an fixed load) and the elastic recovery was determined right after ejection (UMN) and after 24h of relaxation (UCPH). More than 50 diverse materials, blends and final formulations were evaluated.

CONCLUSION By understanding the axial possible recovery, it was to precise develop a model to predict tablet density using linear Fig.2: A. Force distance profile of tablet B calculated to force- density profile. B. Different steps of the prediction C. Comparison of predicted and measured density profile (example microcrystalline cellulose)

Prediction steps:

- 1. Two tablets are compressed, tablet (A) at a low P and tablet (B) at a high P (e.g. 50 350 MPa)
- 2. The pressure density profile is obtained from force in-die thickness data of B (Fig. 2A)
- Tablets A and B are used to establish linear axial recovery relationship (in-die and out-of-die) 3.
- 4. In-die density profile (Fig. 2A) is corrected for elastic recovery to obtain out-of-die profile (Fig. 2B)
- 5. Radial recovery can be corrected if desired, but it does not significantly improve prediction accuracy
- The densities of Tablets A and B are used to make the final correction of the out-of-die density 6. profile

regression relationship between two physical tablets.

Prediction of the density profile was successful for most pharmaceutical materials with different properties (plastic, elastic and brittle). Problems were seen for materials that did not form intact tablets.

POTENTIAL APPLICATIONS

Having a material saving approach to predict the density profile of an API or formulation is of great advantage in early product development, where only very limited amount of material is available.

- 1. Based on the Ryshkewitch-Duckworth relationship between strength and porosity (1), it is possible to predict the full compactibility profile based on the tensile strength and porosity of the two tablets.
- 2. Accurate true density of a material can be derived from the predicted tablet density -P data (2).

Acknowledgments

Else Holmfred and Jiangnan Dun are acknowledged for providing tableting data used in this work. C. Hirschberg acknowledges Innovation Fund Denmark (File Nr. 5150-00024B) and the Faculty of Health and Medical Sciences at the University of Copenhagen for financial support.

Reference

(1) E. Ryshkewitch, J. Am. Ceram. Soc. 36 (1953), 65-68 (2) C.C. Sun, Int J Pharm. 326 (2006) 94-99